Trainer API
Remark: In order to access files, a proper privilege has to be defined additionally:
- for accessing only internal storage using this API, a privilege http://tizen.org/privilege/mediastorage must be provided.
- for accessing only external storage using this API, a privilege http://tizen.org/privilege/externalstorage must be provided.
- for accessing internal and external storage using this API, privileges http://tizen.org/privilege/mediastorage and http://tizen.org/privilege/externalstorage must be provided.
Since: 7.0
Table of Contents
- 1. Type Definitions
- 1.1. OptimizerType
- 1.2. DatasetMode
- 1.3. LayerType
- 1.4. VerbosityLevel
- 1.5. SaveFormat
- 2. Interfaces
- 2.1. MachineLearningTrainer
- 2.2. Layer
- 2.3. Optimizer
- 2.4. Dataset
- 2.5. CompileOptions
- 2.6. RunOptions
- 2.7. Model
- 3. Related Feature
- 4. Full WebIDL
Summary of Interfaces and Methods
Interface | Method |
---|---|
MachineLearningTrainer | |
Layer |
void setProperty (DOMString name, any value)
void dispose ()
|
Optimizer |
void setProperty (DOMString name, any value)
void dispose ()
|
Dataset |
void setProperty (DOMString name, any value, DatasetMode mode)
void dispose ()
|
CompileOptions | |
RunOptions | |
Model |
void compile (optional CompileOptions? options)
void run (RunOptions? options, SuccessCallback successCallback, optional ErrorCallback? errorCallback)
DOMString summarize (optional VerbosityLevel? level)
void setDataset (Dataset dataset)
void setOptimizer (Optimizer optimizer)
void saveToFile (DOMString path, SaveFormat format)
void load (DOMString path, SaveFormat format)
void dispose ()
|
1. Type Definitions
1.1. OptimizerType
enum OptimizerType { "OPTIMIZER_ADAM", "OPTIMIZER_SGD", "OPTIMIZER_UNKNOWN" };
Since: 7.0
- OPTIMIZER_ADAM - Adam Optimizer
- OPTIMIZER_SGD - Stochastic Gradient Descent Optimizer
- OPTIMIZER_UNKNOWN - Unknown Optimizer
1.2. DatasetMode
enum DatasetMode { "MODE_TRAIN", "MODE_VALID", "MODE_TEST" };
Since: 7.0
1.3. LayerType
enum LayerType { "LAYER_INPUT", "LAYER_FC", "LAYER_BN", "LAYER_CONV2D", "LAYER_POOLING2D", "LAYER_FLATTEN", "LAYER_ACTIVATION", "LAYER_ADDITION", "LAYER_CONCAT", "LAYER_MULTIOUT", "LAYER_EMBEDDING", "LAYER_RNN", "LAYER_LSTM", "LAYER_SPLIT", "LAYER_GRU", "LAYER_PERMUTE", "LAYER_DROPOUT", "LAYER_BACKBONE_NNSTREAMER", "LAYER_CENTROID_KNN", "LAYER_PREPROCESS_FLIP", "LAYER_PREPROCESS_TRANSLATE", "LAYER_PREPROCESS_L2NORM", "LAYER_LOSS_MSE", "LAYER_LOSS_CROSS_ENTROPY_SIGMOID", "LAYER_LOSS_CROSS_ENTROPY_SOFTMAX", "LAYER_UNKNOWN" };
Since: 7.0
- LAYER_INPUT - Input Layer type
- LAYER_FC - Fully Connected Layer type
- LAYER_BN - Batch Normalization Layer type
- LAYER_CONV2D - Convolution 2D Layer type
- LAYER_POOLING2D - Pooling 2D Layer type
- LAYER_FLATTEN - Flatten Layer type
- LAYER_ACTIVATION - Activation Layer type
- LAYER_ADDITION - Addition Layer type
- LAYER_CONCAT - Concat Layer type
- LAYER_MULTIOUT - Multi Output Layer type
- LAYER_EMBEDDING - Embedding Layer type
- LAYER_RNN - RNN Layer type
- LAYER_LSTM - LSTM Layer type
- LAYER_SPLIT - Split Layer type
- LAYER_GRU - GRU Layer type
- LAYER_PERMUTE - Permute Layer type
- LAYER_DROPOUT - Dropout Layer type
- LAYER_BACKBONE_NNSTREAMER - Backbone using NNStreamer
- LAYER_CENTROID_KNN - Centroid KNN Layer type
- LAYER_PREPROCESS_FLIP - Preprocess flip Layer type
- LAYER_PREPROCESS_TRANSLATE - Preprocess translate Layer type
- LAYER_PREPROCESS_L2NORM - Preprocess L2Normalization Layer type
- LAYER_LOSS_MSE - Mean Squared Error Loss Layer type
- LAYER_LOSS_CROSS_ENTROPY_SIGMOID - Cross Entropy with Sigmoid Loss Layer type
- LAYER_LOSS_CROSS_ENTROPY_SOFTMAX - Cross Entropy with Softmax Loss Layer type
- LAYER_UNKNOWN - Unknown
1.4. VerbosityLevel
enum VerbosityLevel { "SUMMARY_MODEL", "SUMMARY_LAYER", "SUMMARY_TENSOR" };
Since: 7.0
- SUMMARY_MODEL - Overview of model summary with one-line layer information
- SUMMARY_LAYER - Detailed model summary with layer properties
- SUMMARY_TENSOR - Model summary layer's including weight information
1.5. SaveFormat
enum SaveFormat { "FORMAT_BIN", "FORMAT_INI", "FORMAT_INI_WITH_BIN" };
Since: 7.0
- FORMAT_BIN - Model saved in binary file
- FORMAT_INI - Model configuration saved in INI file
- FORMAT_INI_WITH_BIN - Model saved in two files, INI file contains configuration and reference to binary file
2. Interfaces
2.1. MachineLearningTrainer
[NoInterfaceObject] interface MachineLearningTrainer { Layer createLayer(LayerType type) raises(WebAPIException); Dataset createFileDataset(Path train, optional Path? validate, optional Path test) raises(WebAPIException); Optimizer createOptimizer(OptimizerType type) raises(WebAPIException); Model createModel(optional Path configPath) raises(WebAPIException); };
Since: 7.0
Methods
-
createLayer
-
Creates a neural network layer.
Since: 7.0
Parameters:
- type: Type of the layer.
Exceptions:
- WebAPIException
with error type NotSupportedError, if the feature is not supported.
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type AbortError, if any other error occurs.
Code example:
var l1 = tizen.ml.trainer.createLayer("LAYER_INPUT"); console.log("Type of layer: " + l1.type);
Output example:
Type of layer: LAYER_INPUT
-
createFileDataset
-
Creates a dataset with files to feed to a neural network.
Since: 7.0
Each file provided to the function should match format described in machine learning guide
Parameters:
- train: Path for file with data for training. Check Filesystem API for more information about valid path in Tizen.
- validate [optional] [nullable]: Path for file with data for validating. Check Filesystem API for more information about valid path in Tizen.
- test [optional]: Path for file with data for testing. Check Filesystem API for more information about valid path in Tizen.
Exceptions:
- WebAPIException
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type SecurityError, if the application does not have the privilege to access the storage. For more information, see Storage privileges.
with error type AbortError, if any other error occurs.
Code example:
var trainsetFile = "documents/trainingSet.dat"; var validsetFile = "documents/valSet.dat"; var dataset = tizen.ml.trainer.createFileDataset(trainsetFile, validsetFile); console.log("Type of dataset: " + dataset.type);
Output example:
Type of dataset: DATASET_FILE
-
createOptimizer
-
Creates a neural network optimizer.
Optimizer createOptimizer(OptimizerType type);
Since: 7.0
Parameters:
- type: Type of the optimizer.
Exceptions:
- WebAPIException
with error type NotSupportedError, if the feature is not supported.
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type AbortError, if any other error occurs.
Code example:
var opt = tizen.ml.trainer.createOptimizer("OPTIMIZER_ADAM"); console.log("Type of optimizer: " + opt.type);
Output example:
Type of optimizer: OPTIMIZER_ADAM
-
createModel
-
Creates model basing on config file. If optional configPath is not provided, empty model is created.
Since: 7.0
See the Trainer Guide to learn about configuration file structure.
Even if the model is created from a file, switching, modifying, or setting a component is possible until you compile model with Model::compile.
Parameters:
- configPath [optional]: Path to config file. Only INI formatted files *.ini are supported to create a model from a file. Check Filesystem API for more information about valid path in Tizen.
Exceptions:
- WebAPIException
with error type NotFoundError, if file does not exist.
with error type SecurityError, if the application does not have the privilege to access the storage. For more information, see Storage privileges.
with error type AbortError, if any other error occurs.
Code example:
var configFile = "documents/config.ini"; var m = tizen.ml.trainer.createModel(configFile); console.log("Model with config:
" + m.summarize()); var m2 = tizen.ml.trainer.createModel(); console.log("Model without config:
" + m2.summarize());Output example:
Model with config: ===================<N9nntrainer13NeuralNetworkE at 0xb8095df0> graph contains 3 operation nodes Model without config: ===================<N9nntrainer13NeuralNetworkE at 0xb8093f38> graph contains 0 operation nodes model is empty!
2.2. Layer
[NoInterfaceObject] interface Layer { readonly attribute DOMString name; readonly attribute LayerType type; void setProperty(DOMString name, any value) raises(WebAPIException); void dispose() raises(WebAPIException); };
Since: 7.0
Attributes
-
readonly
DOMString nameThe name of the layer.
Name is unique to this layer in a model and might be changed once layer is added to the model to keep the name unique. name value can be changed using Layer::setProperty() method.
Since: 7.0
-
readonly
LayerType typeThe type of the layer.
Since: 7.0
Methods
-
setProperty
-
Sets the value of layer's property.
void setProperty(DOMString name, any value);
Since: 7.0
Properties available for every LayerType:
Property name Property type Description name (string) An identifier for each layer input_shape (string) Formatted string as dim1:dim2:dim3:dim4.
First layer of the model must have input_shape. Other can be omitted as it is calculated at compile phase.activation (categorical) Activation type tanh hyperbolic tangent sigmoid sigmoid function relu relu function softmax softmax function weight_initializer (categorical) Weight initializer zeros Zero initialization lecun_normal LeCun Normal Initialization lecun_uniform LeCun Uniform Initialization xavier_normal Xavier Normal Initialization xavier_uniform Xavier Uniform Initialization he_normal He Normal Initialization he_uniform He Uniform Initialization bias_initializer (categorical) Bias initializer, same category as weight_initializer weight_regularizer (categorical) Weight regularizer l2norm L2 weight regularizer weight_regularizer_constant (double) Weight regularizer constant flatten (boolean) Flatten shape from c:h:w to 1:1:c*h*w Properties available only for LAYER_INPUT LayerType:
Property name Property type Description normalization (boolean) Normalize input if true standardization (boolean) Standardize input if true Properties available only for LAYER_FC LayerType:
Property name Property type Description unit (long) number of outputs Parameters:
- name: Name of the property.
- value: The new value of the property.
Exceptions:
- WebAPIException
with error type InvalidValuesError, if any of the input parameters contain an invalid value.
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type NotFoundError, if the layer does not exist anymore.
Code example:
var l1 = tizen.ml.trainer.createLayer("LAYER_INPUT"); l1.setProperty("input_shape", "1:1:62720"); console.log("Layer type: " + l1.type);
Output example:
Layer type: LAYER_INPUT
-
dispose
-
Destroys layer object and releases the resources associated by the layer object.
void dispose();
Since: 7.0
Layer will not be destroyed and function will throw exception if Layer is added to model. Such layer will be destroyed on Model disposal.
Exceptions:
- WebAPIException
with error type NotFoundError, if the layer does not exist anymore.
with error type NoModificationAllowedError, if the layer is attached to a model.
Code example:
var m = tizen.ml.trainer.createModel(); var l1 = tizen.ml.trainer.createLayer("LAYER_INPUT"); l1.dispose(); try { m.addLayer(l1); } catch (e) { console.log("Adding disposed layer will fail."); }
Output example:
Adding disposed layer will fail.
- WebAPIException
2.3. Optimizer
[NoInterfaceObject] interface Optimizer { readonly attribute OptimizerType type; void setProperty(DOMString name, any value) raises(WebAPIException); void dispose() raises(WebAPIException); };
Since: 7.0
Attributes
-
readonly
OptimizerType typeThe type of the optimizer.
Since: 7.0
Methods
-
setProperty
-
Sets the value of optimizer's property.
void setProperty(DOMString name, any value);
Since: 7.0
Properties available for all optimizers:
Property name Property type learning_rate float Properties available for SGD and Adam optimizers:
Property name Property type decay_rate float decay_steps float Optimizers use exponential decay type.
Properties available for Adam optimizers:
Property name Property type beta1 float beta2 float epsilon float Parameters:
- name: Name of the property.
- value: The new value of the property.
Exceptions:
- WebAPIException
with error type InvalidValuesError, if any of the input parameters contain an invalid value.
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type NotFoundError, if the optimizer does not exist anymore.
Code example:
var opt = tizen.ml.trainer.createOptimizer("OPTIMIZER_ADAM"); opt.setProperty("learning_rate", "0.0001"); console.log("Optimizer type: " + opt.type);
Output example:
Optimizer type: OPTIMIZER_ADAM
-
dispose
-
Destroys optimizer object and releases the resources associated by the optimizer object.
void dispose();
Since: 7.0
Optimizer will not be destroyed and function will throw exception if optimizer is added to model. Such optimizer will be destroyed on Model disposal.
Exceptions:
- WebAPIException
with error type NotFoundError, if the optimizer does not exist anymore.
with error type NoModificationAllowedError, if the optimizer is attached to a model.
Code example:
var m = tizen.ml.trainer.createModel(); var opt = tizen.ml.trainer.createOptimizer("OPTIMIZER_ADAM"); opt.dispose(); try { m.setOptimizer(opt); } catch (e) { console.log("Setting disposed optimizer will fail."); }
Output example:
Setting disposed optimizer will fail.
- WebAPIException
2.4. Dataset
[NoInterfaceObject] interface Dataset { readonly attribute type; void setProperty(DOMString name, any value, DatasetMode mode) raises(WebAPIException); void dispose() raises(WebAPIException); };
Since: 7.0
Attributes
-
readonly
DatasetType typeThe type of the dataset.
Since: 7.0
Methods
-
setProperty
-
Sets the value of dataset's property.
void setProperty(DOMString name, any value, DatasetMode mode);
Since: 7.0
Properties available for all types of dataset:
Property name Description buffer_size Buffer size (unsigned long) Properties available only for file type dataset:
Property name Description train_data Path to training data val_data Path to validation data test_data Path to testing data label_data Path to label data Parameters:
- name: Name of the property.
- value: The new value of the property.
- mode: The mode of dataset content for which property should be set
Exceptions:
- WebAPIException
with error type InvalidValuesError, if any of the input parameters contain an invalid value.
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type NotFoundError, if the dataset does not exist anymore.
Code example:
var trainsetFile = "documents/trainingSet.dat"; var validsetFile = "documents/valSet.dat"; var dataset = tizen.ml.trainer.createFileDataset(trainsetFile, validsetFile); dataset.setProperty("buffer_size", "100", "MODE_TRAIN"); console.log("Type of dataset: " + dataset.type);
Output example:
Type of dataset: DATASET_FILE
-
dispose
-
Destroy dataset object and release associated resources
void dispose();
Since: 7.0
Dataset will not be destroyed and function will throw exception if dataset is added to model. Such dataset will be destroyed on Model disposal.
Exceptions:
- WebAPIException
with error type NotFoundError, if the dataset does not exist anymore.
with error type NoModificationAllowedError, if the dataset is attached to a model.
Code example:
var m = tizen.ml.trainer.createModel(); var trainsetFile = "documents/trainingSet.dat"; var validsetFile = "documents/valSet.dat"; var dataset = tizen.ml.trainer.createFileDataset(trainsetFile, validsetFile); dataset.dispose(); try { m.setDataset(dataset); } catch (e) { console.log("Setting disposed dataset will fail."); }
Output example:
Setting disposed dataset will fail.
- WebAPIException
2.5. CompileOptions
dictionary CompileOptions { DOMString loss; unsigned long batch_size; };
Since: 7.0
Dictionary members
- DOMString loss
-
Loss function type. Available loss functions:
Value Description "mse" Mean Squared Error "cross" Cross Entropy (sigmoid/softmax depending of activation function of last layer) Since: 7.0
- unsigned long batch_size
-
Batch size.
Since: 7.0
Remark: This property can be redefined in run() stage using RunOptions.batch_size.
2.6. RunOptions
dictionary RunOptions { unsigned long epochs; DOMString save_path; unsigned long batch_size; };
Since: 7.0
Dictionary members
- unsigned long epochs
-
Maximum epochs.
Since: 7.0
- DOMString save_path
-
Path to save trained model.
Since: 7.0
- unsigned long batch_size
-
Batch size.
Since: 7.0
Remark: This property can be provided on both compile() and run() stages.
2.7. Model
[NoInterfaceObject] interface Model { void compile(optional CompileOptions? options) raises(WebAPIException); void run(RunOptions? options, SuccessCallback successCallback, optional ErrorCallback? errorCallback) raises(WebAPIException); DOMString summarize(optional VerbosityLevel? level) raises(WebAPIException); void addLayer(Layer layer) raises(WebAPIException); void setDataset(Dataset dataset) raises(WebAPIException); void setOptimizer(Optimizer optimizer) raises(WebAPIException); void saveToFile(DOMString path, SaveFormat format) raises(WebAPIException); void load(DOMString path, SaveFormat format) raises(WebAPIException); void dispose() raises(WebAPIException); };
Since: 7.0
Methods
-
compile
-
Compiles the model. Once compiled, any modification to the properties of model or layers/dataset/optimizer in the model will be restricted. Further addition of layers or changing the optimizer/dataset of the model will not be permitted and will cause NoModificationAllowedError.
void compile(optional CompileOptions? options);
Since: 7.0
Parameters:
- options [optional] [nullable]: Hyperparameters for model training.
Exceptions:
- WebAPIException
with error type InvalidValuesError, if any of the input parameters contain an invalid value.
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type NotFoundError, if model does not exist anymore.
with error type NoModificationAllowedError, if the model is already compiled.
with error type AbortError, if any internal error occurs.
Code example:
/* assume that m is a valid model with all options set, not yet compiled */ var compileOpts = {loss: "cross", batch_size: "16"}; m.compile(compileOpts); console.log("Compilation succeeded");
Output example:
Compilation succeeded
-
run
-
Trains the neural network model.
void run(RunOptions? options, SuccessCallback successCallback, optional ErrorCallback? errorCallback);
Since: 7.0
The ErrorCallback method is called with an argument of type WebAPIException with an error:
- InvalidValuesError - if options contain an invalid value.
- NotFoundError - if the model does not exist anymore.
- InvalidStateError - if the model is not compiled.
- AbortError - if any other error occurs.
Parameters:
- options [nullable]: Hyperparameters for model training.
- successCallback: Callback function to invoke when the training along with requested validation and testing completes successfully.
- errorCallback [optional] [nullable]: Callback function to invoke when an error occurs.
Exceptions:
- WebAPIException
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
Code example:
/* assume that m is a valid, compiled model with all options set */ var runOpts = {epochs: 2, save_path: outputFile}; m.run(runOpts, function() { console.log("Training successful"); }, function(e) { console.log("error " + JSON.stringify(e)); });
Output example:
Training successful
-
summarize
-
Gets summary of the model.
DOMString summarize(optional VerbosityLevel? level);
Since: 7.0
Parameters:
-
level [optional] [nullable]:
Verbosity level of the summary.
- Default value: SUMMARY_MODEL.
Exceptions:
- WebAPIException
with error type NotFoundError, if the model does not exist anymore.
with error type AbortError, if any internal error occurs.
Code example:
/* assume that m is a valid model with all options set */ console.log(m.summarize());
Output example:
===================<N9nntrainer13NeuralNetworkE at 0xb830b5d8> graph contains 3 operation nodes
-
level [optional] [nullable]:
Verbosity level of the summary.
-
addLayer
-
Adds layer to neural network model.
void addLayer(Layer layer);
Since: 7.0
The layer is added to the end of the existing layers in the model.
Parameters:
- layer: Layer to add.
Exceptions:
- WebAPIException
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type NotFoundError, if the model or the layer does not exist anymore.
with error type NoModificationAllowedError, if the model is already compiled or model compilation or training is in progress.
with error type AbortError, if any internal error occurs.
Code example:
var m = tizen.ml.trainer.createModel(); var l1 = tizen.ml.trainer.createLayer("LAYER_INPUT"); m.addLayer(l1); console.log("Added layer: " + l1.type);
Output example:
Added layer: LAYER_INPUT
-
setDataset
-
Sets the dataset (data provider) for the neural network model.
void setDataset(Dataset dataset);
Since: 7.0
The dataset will provide training, validation and test data for the model.
Parameters:
- dataset: Dataset to set.
Exceptions:
- WebAPIException
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type NotFoundError, if the model or the dataset does not exist anymore.
with error type NoModificationAllowedError, if model compilation or training is in progress.
with error type AbortError, if any internal error occurs.
Code example:
var trainsetFile = "documents/trainingSet.dat"; var validsetFile = "documents/valSet.dat"; var m = tizen.ml.trainer.createModel(); var dataset = tizen.ml.trainer.createFileDataset(trainsetFile, validsetFile); m.setDataset(dataset); console.log("Set dataset: " + dataset.type);
Output example:
Set dataset: DATASET_FILE
-
setOptimizer
-
Sets the optimizer for the neural network model.
void setOptimizer(Optimizer optimizer);
Since: 7.0
Parameters:
- optimizer: Optimizer to set.
Exceptions:
- WebAPIException
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type NotFoundError, if the model or the optimizer does not exist anymore.
with error type NoModificationAllowedError, if the model is already compiled or model compilation or training is in progress.
with error type AbortError, if any internal error occurs.
Code example:
var m = tizen.ml.trainer.createModel(); var opt = tizen.ml.trainer.createOptimizer("OPTIMIZER_ADAM"); m.setOptimizer(opt); console.log("Set optimizer: " + opt.type);
Output example:
Set optimizer: OPTIMIZER_ADAM
-
saveToFile
-
Saves model to file in selected format for future reuse
void saveToFile(DOMString path, SaveFormat format);
Since: 7.0
Remark: Using FORMAT_INI_WITH_BIN creates two files: *.ini (containing parameters of a model) and *.bin (containing data of a learnt model)
Parameters:
- path: Path to output file. If file already exists exception will be thrown
- format: Selected output format
Exceptions:
- WebAPIException
with error type InvalidValuesError, if any of the input parameters contain an invalid value.
with error type NoModificationAllowedError, if a destination file already exists or model compilation or training is in progress.
with error type NotFoundError, if the model does not exist anymore.
with error type SecurityError, if the application does not have the privilege to access the storage. For more information, see Storage privileges.
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type AbortError, if any internal error occurs.
Code example:
var m = tizen.ml.trainer.createModel(); /* set all properties, add layers, set optimizer and dataset */ /* compile prepared model before saving */ m.saveToFile("documents/train_model.ini", "FORMAT_INI"); console.log("Successfully saved to file");
Output example:
Successfully saved to file
-
load
-
Loads model from a file in selected format.
void load(DOMString path, SaveFormat format);
Since: 7.0
Remark: Using FORMAT_INI_WITH_BIN requires two files: *.ini (containing parameters of a model) and *.bin (containing data of a learnt model). Loading of binary data is done during compilation of a model.
Parameters:
- path: Path to file storing a model. If file does not exist exception will be thrown
- format: Selected file format
Exceptions:
- WebAPIException
with error type InvalidValuesError, if any of the input parameters contain an invalid value.
with error type NotFoundError, if file does not exist or the model does not exist anymore.
with error type NoModificationAllowedError, if model compilation or training is in progress.
with error type SecurityError, if the application does not have the privilege to access the storage. For more information, see Storage privileges.
with error type TypeMismatchError, if any input parameter is not compatible with the expected type for that parameter.
with error type AbortError, if any internal error occurs.
Code example:
var m = tizen.ml.trainer.createModel(); m.load("documents/train_model.ini", "FORMAT_INI_WITH_BIN"); console.log("Successfully loaded a model:"); console.log(m.summarize());
Output example:
Successfully loaded a model: ===================<N9nntrainer13NeuralNetworkE at 0xb8095df0> graph contains 3 operation nodes
-
dispose
-
Destroys model object and releases the resources associated by the model object.
void dispose();
Since: 7.0
When model is disposed all attached objects (layers, dataset and optimizer) are also destroyed.
Exceptions:
- WebAPIException
with error type NotFoundError, if the model does not exist anymore.
with error type NoModificationAllowedError, if model compilation or training is in progress.
Code example:
var m = tizen.ml.trainer.createModel(); var l1 = tizen.ml.trainer.createLayer("LAYER_INPUT"); m.dispose(); try { m.addLayer(l1); } catch (e) { console.log("Adding layer to disposed model will fail."); }
Output example:
Adding layer to disposed model will fail.
- WebAPIException
3. Related Feature
To guarantee that the ML application runs on a device with the ML feature, declare the following feature requirements in the config file:
To guarantee that the ML application runs on a device with the ML Trainer feature, declare the following feature requirements in the config file:
4. Full WebIDL
module Trainer { enum OptimizerType { "OPTIMIZER_ADAM", "OPTIMIZER_SGD", "OPTIMIZER_UNKNOWN" }; enum DatasetMode { "MODE_TRAIN", "MODE_VALID", "MODE_TEST" }; enum LayerType { "LAYER_INPUT", "LAYER_FC", "LAYER_BN", "LAYER_CONV2D", "LAYER_POOLING2D", "LAYER_FLATTEN", "LAYER_ACTIVATION", "LAYER_ADDITION", "LAYER_CONCAT", "LAYER_MULTIOUT", "LAYER_EMBEDDING", "LAYER_RNN", "LAYER_LSTM", "LAYER_SPLIT", "LAYER_GRU", "LAYER_PERMUTE", "LAYER_DROPOUT", "LAYER_BACKBONE_NNSTREAMER", "LAYER_CENTROID_KNN", "LAYER_PREPROCESS_FLIP", "LAYER_PREPROCESS_TRANSLATE", "LAYER_PREPROCESS_L2NORM", "LAYER_LOSS_MSE", "LAYER_LOSS_CROSS_ENTROPY_SIGMOID", "LAYER_LOSS_CROSS_ENTROPY_SOFTMAX", "LAYER_UNKNOWN" }; enum VerbosityLevel { "SUMMARY_MODEL", "SUMMARY_LAYER", "SUMMARY_TENSOR" }; enum SaveFormat { "FORMAT_BIN", "FORMAT_INI", "FORMAT_INI_WITH_BIN" }; dictionary CompileOptions { DOMString loss; unsigned long batch_size; }; dictionary RunOptions { unsigned long epochs; DOMString save_path; unsigned long batch_size; }; [NoInterfaceObject] interface MachineLearningTrainer { Layer createLayer(LayerType type) raises(WebAPIException); Dataset createFileDataset(Path train, optional Path? validate, optional Path test) raises(WebAPIException); Optimizer createOptimizer(OptimizerType type) raises(WebAPIException); Model createModel(optional Path configPath) raises(WebAPIException); }; [NoInterfaceObject] interface Layer { readonly attribute DOMString name; readonly attribute LayerType type; void setProperty(DOMString name, any value) raises(WebAPIException); void dispose() raises(WebAPIException); }; [NoInterfaceObject] interface Optimizer { readonly attribute OptimizerType type; void setProperty(DOMString name, any value) raises(WebAPIException); void dispose() raises(WebAPIException); }; [NoInterfaceObject] interface Dataset { readonly attribute type; void setProperty(DOMString name, any value, DatasetMode mode) raises(WebAPIException); void dispose() raises(WebAPIException); }; [NoInterfaceObject] interface Model { void compile(optional CompileOptions? options) raises(WebAPIException); void run(RunOptions? options, SuccessCallback successCallback, optional ErrorCallback? errorCallback) raises(WebAPIException); DOMString summarize(optional VerbosityLevel? level) raises(WebAPIException); void addLayer(Layer layer) raises(WebAPIException); void setDataset(Dataset dataset) raises(WebAPIException); void setOptimizer(Optimizer optimizer) raises(WebAPIException); void saveToFile(DOMString path, SaveFormat format) raises(WebAPIException); void load(DOMString path, SaveFormat format) raises(WebAPIException); void dispose() raises(WebAPIException); }; };