Machine Learning Train

You can use the Tizen.MachineLearning.Train class to construct, control, and train a machine learning model in Tizen devices.

The main features of machine learning train include the following:

  • Constructing a deep neural network (DNN)

    You can construct a DNN model using a model description file or by writing code through Tizen.MachineLearning.Train class.

  • Training with your own data

    Tizen.MachineLearning.Train class also allows you to train the model with your own data as a file I/O or by defining a data generator.

  • Evaluating the model during training

    You can validate and test your model during the training process easily by defining the dataset.

Note

Every example code does not handle all error use cases. The error must be handled more extensively compared to the example code written on this page.

Prerequisites

To enable your application to use Tizen.MachineLearning.Train class, follow the steps below:

  1. To use the method and properties of the Tizen.MachineLearning.Train.Model, Tizen.MachineLearning.Train.Dataset, Tizen.MachineLearning.Train.Layer and Tizen.MachineLearning.Train.Optimizer, include the Tizen.MachineLearning.Train namespace in your application:

    C#
    Copy
    using Tizen.MachineLearning.Train;
  2. To use Tizen.MachineLearning.Train class, include the following features in your tizen-manifest.xml file:

    XML
    Copy
    <feature name="http://tizen.org/feature/machine_learning">true</feature> <feature name="http://tizen.org/feature/machine_learning.training">true</feature>

    In case of saving or loading model files from outside of the application’s own resources, the application has to request permission by adding the following privileges to the tizen-manifest.xml file:

    XML
    Copy
    <privileges> <!-- For accessing media storage --> <privilege>http://tizen.org/privilege/mediastorage</privilege> <!-- For accessing external storage --> <privilege>http://tizen.org/privilege/externalstorage</privilege> </privileges>

Building blocks

Following are the four major class of Tizen.MachineLearning.Train:

Model class

Tizen.MachineLearning.Train.Model class is a wrapper component that has the topology of Tizen.MachineLearning.Train.Layer, Tizen.MachineLearning.Train.Optimizer, and Tizen.MachineLearning.Train.Dataset class. Tizen.MachineLearning.Train.Model class performs training and saves the updated parameters that can later be used for inference. In the following figure, data represents input data or feature and label is the actual value to be tested over prediction:

model

C#
Copy
// Create model string filePath = Tizen.Applications.Application.Current.DirectoryInfo.Data; string binPath = filePath + "model_weights.bin"; string iniPath = filePath + "model.ini"; string iniWithBinPath = filePath + "model_and_weights.ini"; var model = new Model(); /* Configure model(omitted for brevity) */ // Compile model - This freezes the model. Afterwards the model cannot be modified. model.Compile("loss=cross", "batch_size=16"); // Run model model.Run("epochs=2"); // Save and load below format. model.Save(binPath, NNTrainerModelFormat.Bin); model.Save(iniPath, NNTrainerModelFormat.Ini); model.Save(iniWithBinPath, NNTrainerModelFormat.iniWithBin); // Model will be disposed by GC but you can use Dispose() as below. model.Dispose();

A number of properties can be set at Model.Compile and Model.Run phase:

You can scroll this table.
Method Key Value Description
Model.Compile, Model.Run epochs (integer) Determines epochs for the model.
save_path (string) Model path to save parameters after a single epoch.

Layer class

Tizen.MachineLearning.Train.Layer class is a component that does actual computation while managing internal trainable parameters. The following example shows how to create, add and get the layer to the model:

C#
Copy
// Create model var model = new Model(); // Create layer var fcLayer = new Layer(NNTrainerLayerType.FC); // Configure layer fcLayer.SetProperty("unit=10", "activation=softmax", "bias_initializer=zeros", "name=fc100"); // After adding the layer to model, you do not need to destroy layer since ownership is transferred to the model. model.AddLayer(fcLayer); // Get layer from the model with the given name. // The returned layer must not be deleted as it is owned by the model. string layerName = "fc100"; Layer getLayer = model.GetLayer(layername);

There are two types of layers. One type includes commonly trainable weights and the other type does not include them. The following are the available properties for each layer type which include commonly trainable weights.

You can scroll this table.
Type Key Value Default value Description
(Universal properties) Universal properties that apply to every layer
 name (string) An identifier for each layer
 trainable (boolean) true Allow weights to be trained if true
 input_layers (string) Comma-separated names of layers to be inputs of the current layer
 input_shape (string) Comma-separated formatted string as “channel:height:width”. If there is no channel then it must be 1. The first layer of the model must have input_shape. Other can be omitted as it is calculated at compile phase.
 flatten (boolean) Flatten shape from c:h:w to 1:1:c*h*w
 activation (categorical) Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 loss (float) 0 Loss
 weight_initializer (categorical) xavier_uniform Weight initializer
 zeros Zero initialization
 lecun_normal LeCun normal initialization
 lecun_uniform LeCun uniform initialization
 xavier_normal Xavier normal initialization
 xavier_uniform Xavier uniform initialization
 he_normal He normal initialization
 he_uniform He uniform initialization
 bias_initializer (categorical) zeros Bias initializer
 zeros Zero initialization
 lecun_normal LeCun normal initialization
 lecun_uniform LeCun uniform initialization
 xavier_normal Xavier normal initialization
 xavier_uniform Xavier uniform initialization
 he_normal He normal initialization
 he_uniform He uniform initialization
 weight_regularizer (categorical) Weight regularizer. Currently, only l2norm is supported
 l2norm L2 weight regularizer
 weight_regularizer_constant (float) 1 Weight regularizer constant
NNTrainerLayerType.FC Fully connected layer
 unit (unsigned integer) Number of outputs
NNTrainerLayerType.Conv1D 1D convolution layer
 filters (unsigned integer) Number of filters
 kernel_size (unsigned integer) Kernel size
 stride (unsigned integer) 1 Strides
 padding (categorical) valid Padding type
 valid No padding
 same Preserve dimension
 (unsigned integer) Size of padding applied uniformly to all side
 (array of unsigned integer of size 2) Padding for left, right
NNTrainerLayerType.Conv2D 2D convolution layer
 filters (unsigned integer) Number of filters
 kernel_size (array of unsigned integer) Comma-separated unsigned integers for kernel size, height, width respectively
 stride (array of unsigned integer) 1, 1 Comma-separated unsigned integers for strides, height, width respectively
 padding (categorical) valid Padding type
 valid No padding
 same Preserve height/width dimension
 (unsigned integer) Size of padding applied uniformly to all side
 (array of unsigned integer of size 2) Padding for height, width
 (array of unsigned integer of size 4) Padding for top, bottom, left, right
NNTrainerLayerType.Embedding Embedding layer
 in_dim (unsigned integer) Vocabulary size
 out_dim (unsigned integer) Word embedding size
NNTrainerLayerType.RNN RNN layer
 unit (unsigned integer) Number of output neurons
 hidden_state_activation (categorical) tanh Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 return_sequences (boolean) false Return only the last output if true, else return full output
 dropout (float) 0 Dropout rate
 integrate_bias (boolean) false Integrate bias_ih, bias_hh to bias_h
NNTrainerLayerType.RNNCell RNN cell layer
 unit (unsigned integer) Number of output neurons
 hidden_state_activation (categorical) tanh Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 dropout (float) 0 Dropout rate
 integrate_bias (boolean) false Integrate bias_ih, bias_hh to bias_h
NNTrainerLayerType.LSTM LSTM layer
 unit (unsigned integer) Number of output neurons
 hidden_state_activation (categorical) tanh Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 recurrent_activation (categorical) sigmoid Activation type for recurrent step
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 return_sequences (boolean) false Return only the last output if true, else return full output
 dropout (float) 0 Dropout rate
 integrate_bias (boolean) false Integrate bias_ih, bias_hh to bias_h
 max_timestep (unsigned integer) Maximum timestep
NNTrainerLayerType.LSTMCell LSTM cell layer
 unit (unsigned integer) Number of output neurons
 hidden_state_activation (categorical) tanh Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 recurrent_activation (categorical) sigmoid Activation type for recurrent step
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 dropout (float) 0 Dropout rate
 integrate_bias (boolean) false Integrate bias_ih, bias_hh to bias_h
NNTrainerLayerType.GRU GRU layer
 unit (unsigned integer) Number of output neurons
 hidden_state_activation (categorical) tanh Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 recurrent_activation (categorical) sigmoid Activation type for recurrent step
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 return_sequences (boolean) false Return only the last output if true, else return full output
 dropout (float) 0 Dropout rate
 integrate_bias (boolean) false Integrate bias_ih, bias_hh to bias_h
 reset_after (boolean) true Apply reset gate before/after the matrix
NNTrainerLayerType.GRUCell GRU cell layer
 unit (unsigned integer) Number of output neurons
 reset_after (boolean) true Apply reset gate before/after the matrix multiplication
 hidden_state_activation (categorical) tanh Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 recurrent_activation (categorical) sigmoid Activation type for recurrent step
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 dropout (float) 0 Dropout rate
 integrate_bias (boolean) false Integrate bias_ih, bias_hh to bias_h
NNTrainerLayerType.ZoneoutLSTMCell Zoneout LSTM cell layer
 unit (unsigned integer) Number of output neurons
 hidden_state_activation (categorical) tanh Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 recurrent_activation (categorical) sigmoid Activation type for recurrent step
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 cell_state_zoneout_rate (float) 0 Zoneout rate for cell state
 hidden_state_zoneout_rate (float) 0 Zoneout rate for hidden state
 integrate_bias (boolean) false Integrate bias_ih, bias_hh to bias_h



The following are the available properties for each layer type which do not include (weight_initializer, bias_initializer, weight_regularizer, weight_regularizer_constant) properties.

You can scroll this table.
Type Key Value Default value Description
(Universal properties) Universal properties that apply to every layer
 name (string) An identifier for each layer
 trainable (boolean) true Allow weights to be trained if true
 input_layers (string) Comma-separated names of layers to be inputs of the current layer
 input_shape (string) Comma-separated formatted string as “channel:height:width”. If there is no channel then it must be 1. First layer of the model must have input_shape. Other can be omitted as it is calculated at compile phase.
 flatten (boolean) Flatten shape from c:h:w to 1:1:c*h*w
 activation (categorical) Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
 loss (float) 0 Loss
NNTrainerLayerType.Input Input layer
 normalization (boolean) false Normalize input if true
 standardization (boolean) false Standardize input if true
NNTrainerLayerType.BN Batch normalization layer
 epsilon (float) 0.001 Small value to avoid dividing by zero
 moving_mean_initializer (categorical) zeros Moving mean initializer
 zeros Zero initialization
 lecun_normal LeCun normal initialization
 lecun_uniform LeCun uniform initialization
 xavier_normal Xavier normal initialization
 xavier_uniform Xavier uniform initialization
 he_normal He normal initialization
 he_uniform He uniform initialization
 moving_variance_initializer (categorical) ones Moving variance initializer
 zeros Zero initialization
 lecun_normal LeCun normal initialization
 lecun_uniform LeCun uniform initialization
 xavier_normal Xavier normal initialization
 xavier_uniform Xavier uniform initialization
 he_normal He normal initialization
 he_uniform He uniform initialization
 gamma_initializer (categorical) ones Gamma initializer
 zeros Zero initialization
 lecun_normal LeCun normal initialization
 lecun_uniform LeCun uniform initialization
 xavier_normal Xavier normal initialization
 xavier_uniform Xavier uniform initialization
 he_normal He normal initialization
 he_uniform He uniform initialization
 beta_initializer (categorical) zeros Beta initializer
 zeros Zero initialization
 lecun_normal LeCun normal initialization
 lecun_uniform LeCun uniform initialization
 xavier_normal Xavier normal initialization
 xavier_uniform Xavier uniform initialization
 he_normal He normal initialization
 he_uniform He uniform initialization
 momentum (float) 0.99 Momentum for moving average in batch normalization
NNTrainerLayerType.Pooling2D Pooling layer
 pooling (categorical) Pooling type
 max Max pooling
 average Average pooling
 global_max Global max pooling
 global_average Global average pooling
 pool_size (array of unsigned integer) Comma-separated unsigned integers for pooling size, height, width respectively
 stride (array of unsigned integer) 1, 1 Comma-separated unsigned integers for stride, height, width respectively
 padding (categorical) valid Padding type
 valid No padding
 same Preserve height/width dimension
 (unsigned integer) Size of padding applied uniformly to all side
 (array of unsigned integer of size 2) Padding for height, width
 (array of unsigned integer of size 4) Padding for top, bottom, left, right
NNTrainerLayerType.Flatten Flatten layer
NNTrainerLayerType.Activation Activation layer
 activation (categorical) Activation type
 tanh Hyperbolic tangent
 sigmoid Sigmoid function
 relu Relu function
 softmax Softmax function
NNTrainerLayerType.Addition Addition layer
NNTrainerLayerType.Concat Concat layer
NNTrainerLayerType.MultiOut Multiout layer
NNTrainerLayerType.Split Split layer
 split_dimension (unsigned integer) Which dimension to split. Split batch dimension is not allowed
NNTrainerLayerType.Permute Permute layer
NNTrainerLayerType.Dropout Dropout layer
 dropout (float) 0 Dropout rate
NNTrainerLayerType.BackboneNNStreamer NNStreamer layer
 model_path (string) NNStreamer model path
NNTrainerLayerType.CentroidKNN Centroid KNN layer
 num_class (unsigned integer) Number of class
NNTrainerLayerType.PreprocessFlip Preprocess flip layer
 flip_direction (categorical) Flip direction
 horizontal Horizontal direction
 vertical Vertical direction
 horizontal_and_vertical horizontal_and_vertical Horizontal and vertical direction
NNTrainerLayerType.PreprocessTranslate Preprocess translate layer
 random_translate (float) Translate factor value
NNTrainerLayerType.PreprocessL2Norm Preprocess l2norm layer
NNTrainerLayerType.LoseMSE MSE loss layer
NNTrainerLayerType.LossCrossEntropySigmoid Cross entropy with sigmoid loss layer
NNTrainerLayerType.LossCrossEntropySoftmax Cross entropy with softmax loss layer

Optimizer class

Tizen.MachineLearning.Train.Optimizer class determines how to update model parameters according to loss from prediction. Currently, Stochastic Gradient Descent optimizer and Adam optimizer are supported:

C#
Copy
// Create model var model = new Model(); // Create optimizer var optimizer = new Oprimizer(NNTrainerOptimizerType.SGD); // Configure an optimizer optimizer.SetProperty("beta1=0.002", "beta2=0.001"); // Set optimizer to the model // No need to destroy optimizer after setting optimizer since the ownership is transferred to the model. model.SetOptimizer(optimizer);

Following are the available properties for each optimizer type:

You can scroll this table.
Type Key value Description
(Universal properties) Universal properties that apply to every layer
 learning_rate (float) Initial learning rate for the optimizer
NNTrainerOptimizerType.SGD Stochastic Gradient Descent optimizer
 decay_steps (float) Decay steps
 decay_rate (float) Decay rate
NNTrainerOptimizerType.Adam Adam optimizer
 decay_steps (float) Decay steps
 decay_rate (float) Decay rate
 beta1 (float) Beta1 coefficient for Adam
 beta2 (float) Beta2 coefficient for Adam
 epsilon (float) Epsilon coefficient for Adam

Dataset class

Tizen.MachineLearning.Train.Dataset class is in charge of feeding data into the model. The dataset can be created from a file. For more information, see configure the model section.

The following code is an example of handling Tizen.MachineLearning.Train.Dataset class:

C#
Copy
string datasetFilePath = Tizen.Applications.Application.Current.DirectoryInfo.Data + "trainingSet.dat"; NNTrainerDatasetMode[] datasetMode = new NNTrainerDatasetMode[] { NNTrainerDatasetMode.Test, NNTrainerDatasetMode.Train, NNTrainerDatasetMode.Valid }; // Create dataset var dataset = new Dataset(); for (int i = 0; i < 3; i++) { dataset.AddFile(datasetMode[i], datasetFilePath); // configure dataset dataset.SetProperty(datasetMode[i], "buffer_size=1"); } // after setting a dataset to model, // you do not need to destroy dataset since ownership is transferred to the model. model.SetDataset(dataset);

Construct a model

A model can be constructed with the given configuration file. If you have a model configuration file that describes the model, the file can be used to construct initially with Tizen.MachineLearning.Train.Model(string modelConf). Even if the model is constructed from a file, switching, modifying, or setting a component is possible until you compile with Tizen.MachineLearning.Train.Model.Compile().

Construct a model from a description file

As of now, only INI formatted files *.ini are supported to construct a model from a file.

Create a model from INI formatted file

Special sections [Model], [Optimizers], [train_set], [valid_set], [test_set] are respectively referring to model, optimizer and data provider objects. Rest of INI sections map to a layer. Keys and values from each section set properties of the layer. All keys and values are treated as case-insensitive.

Following is an example of the *.ini file:

ini
Copy
[Model] # Special section that describes model itself Type = NeuralNetwork # Model type : only NeuralNetwork is supported as of now batch_size = 9 #### Model run related properties Epochs = 20 # Epochs [Optimizer] Type = adam # Optimizer : Adaptive Moment Estimation(adam) Learning_rate = 0.0001 # Learning rate for the optimizer Decay_rate = 0.96 # The decay rate for decaying the learning rate Decay_steps = 1000 # decay step for the exponentially decayed learning rate beta1 = 0.9 # beta 1 for adam beta2 = 0.9999 # beta 2 for adam epsilon = 1e-7 # epsilon for adam [train_set] Type = file BufferSize = 9 path = "trainingSet.dat" [valid_set] Type = file path = "valSet.dat" # Add [test_set] section if applicable # Layer Sections, each section name refers to name of the layer [inputlayer] Type = input Input_Shape = 1:1:62720 # Input dimension in channel:height:width Normalization = true [outputlayer] Type = fully_connected Unit = 2 # Width of output dimension bias_initializer = zeros weight_initializer = xavier_uniform Activation = sigmoid # activation : sigmoid, softmax weight_regularizer = l2norm weight_regularizer_constant = 0.005 input_layers = inputlayer [loss] Type = cross # Define loss as a layer

The following restrictions must be adhered to:

  • Model file must have a [Model] section.
  • Model file must have at least one layer.
  • Valid keys must have valid properties. The invalid keys in each section result in an error.
Note

All paths inside the INI file are relative to the INI file path unless the absolute path is stated. Consider setting save_path, train_set, valid_set, and test_set from the code rather than describing inside the model file to avoid this behavior.

The following example constructs model from INI file:

C#
Copy
string configurePath = Tizen.Applications.Application.Current.DirectoryInfo.Resource + "model.ini"; try { var model = new Model(configurePath); } catch (Exception e) { // handle error }

Construct a model on code

An empty model can be constructed with Tizen.MachineLearning.Train.Model().

Configure the model

After constructing a model, the model can be configured by following the steps as described below:

Note

The example code written here reproduces the model description from create a model from INI formatted file except the following is different:

  • Relative path is changed to dynamic app resource and data path.
  • Model related properties that can only be set at compile or run phase.

First, an empty model needs to be created:

C#
Copy
try { var model = new Model(); } catch (Exception e) { //handle error }

Add a layer

Tizen.MachineLearning.Train.Model.AddLayer appends a layer to the end of the graph in the model:

C#
Copy
try { var inputLayer = new Layer(NNTrainerLayerType.Input); inputLayer.SetProperty("name=inputlayer", "input_shape=1:1:62720", "normalization=true"); model.AddLayer(inputLayer); var fcLayer = new Layer(NNTrainerLayerType.FC); fcLayer.SetProperty("name=outputlayer", "unit=2", "bias_initializer=zeros", "weight_initializer=xavier_uniform", "activation=sigmoid"); model.AddLayer(fcLayer); } catch (Exception e) { //handle error }

Get a layer

Tizen.MachineLearning.Train.Model.GetLayer gets a layer from the model with the given name:

C#
Copy
try { // Constructs the neural network model var model = new Model(); // Creates and add a neural network layer var inputLayer = new Layer(NNTrainerLayerType.Input); // Set a name for the layer inputLayer.SetProperty("name=inputlayer"); // Adds layer in neural network model model.AddLayer(inputLayer); // Get layer from the model with the given name. // The returned layer must not be deleted as it is owned by the model. string layerName = "inputlayer"; Layer getLayer = model.GetLayer(layername); } catch (Exception e) { //handle error }

Set an optimizer

Create an optimizer using Tizen.MachineLearning.Train.Optimizer class and set it to the model. The manner is the same as for Tizen.MachineLearning.Train.Layer class:

C#
Copy
try { var model = new Model(); // Create an optimizer var optimizer = new Optimizer(NNTrainerOptimizerType.Adam); // Configure a optimizer optimizer.SetProperty("learning_rate=0.0001", "decay_rate=0.96", "decay_steps=1000", "beta1=0.002", "beta2=0.001", "epsilon=1e-7"); // Set optimizer to the model model.SetOptimizer(optimizer); } catch (Exception e) { //handle error }

Set a dataset

The dataset can be created from a file. Here, you need to provide streams of tensor data and arrays of values representing the label, usually one-hot encoded.

Sample, batch, and epoch

This section explains the following three concepts: sample, batch, and epoch.

Let’s assume a given model requires three inputs and two labels. This has been reflected in the examples below:

  1. Sample

    A sample denotes a single pair of inputs/labels. The example can be as follows:

    markdown
    Copy
    [input_1][input_2][input_3][label_1][label_2]
  2. Batch

    A batch is a bundle of samples which is fed to a single iteration. If a batch is of size 5, the batch layout, where /* denotes nth sample will be as follows:

    markdown
    Copy
    [[input_1/1][input_1/2][input_1/3][input_1/4][input_1/5]], [[input_2/1][input_2/2][input_2/3][input_2/4][input_2/5]], [[input_3/1][input_3/2][input_3/3][input_3/4][input_3/5]], [[label_1/1][label_1/2][label_1/3][label_1/4][label_1/5]], [[label_2/1][label_2/2][label_2/3][label_2/4][label_2/5]],
  3. Epoch

    An epoch refers to a full, exhaustive visit to a dataset.

    So, if you consider Cifar-100 dataset when using the full training set, a single training epoch will contain 50,000 samples. If the batch size is 100, it will be of 500 batches (or iterations).

Construct a dataset on code

An empty dataset can be constructed with Tizen.MachineLearning.Train.Dataset class. A data provider added with NNTrainerDatasetMode.Train, NNTrainerDatasetMode.Valid, NNTrainerDatasetMode.Test will be used when training, validating, and testing respectively.

Consider setting property with Tizen.MachineLearning.Train.Dataset.SetProperty when the data provider needs certain properties.

Set a dataset from file

To create a dataset from files, each file must contain an array of samples. A single sample consists of an array of raw float array for input and another array or raw float array for labels that contains the same size as model output:

smali
Copy
# If a model requires two inputs and a single label for a sample, a single sample would contain... [[float array for input1][input 2][float array for label1]], ..., [[float array for input1][input 2][float array for label1]]

As an example, again, consider the Cifar-100 dataset. In Cifar-100 data, it contains an image of size 3 * 32 * 32 and a coarse label of 20 classes, and a fine label of 100 classes.

If your model requires an image and two labels (coarse, fine) both one-hot encoded for a sample, the file layout would be:

markdown
Copy
[[3072 pixels][20 floats for coarse label][100 floats for fine label]], ... ... [[3072 pixels][20 floats for coarse label][100 floats for fine label]]

After preparing the file, create dataset as follows:

C#
Copy
string datasetFilePath = Tizen.Applications.Application.Current.DirectoryInfo.Data + "trainingSet.dat"; try { var model = new Model(); var dataset = new Dataset(); // a file data provider to be used for training dataset.AddFile(NNTrainerDatasetMode.Train, datasetFilePath); dataset.SetProperty(NNTrainerDatasetMode.Train, "buffer_size=9"); model.SetDataset(dataset); } catch (Exception e) { // handle error }

The property buffer_size defines the maximum amount of batches to be queued while training. When it is not given, it is set to 1.

Compile the model

Compiling a model finalizes the model with loss. Once compiled, any modification to the properties of the model is restricted. Adding layers or changing the optimizer or dataset of the model is not permitted either:

C#
Copy
try { model.Compile("loss=cross"); } catch (Exception e) { // handle error }

Train the model

Now, the model is ready to train. Train model as follows:

C#
Copy
try { model.Run("batch_size=9", "epochs=20"); } catch (Exception e) { // handle error }

Destroy the model

Model will be disposed by GC, but you can use Dispose() method. Tizen.MachineLearning.Train.Model.AddLayer, Tizen.MachineLearning.Train.Model.SetOptimizer, and Tizen.MachineLearning.Train.Model.SetDataset transfers ownership to the model. Tizen.MachineLearning.Train.Layer, Tizen.MachineLearning.Train.Optimizer and Tizen.MachineLearning.Train.Dataset that belongs to the model are also deleted.

Use the trained model for inference

The trained model can be used for inference with Machine Learning Inference APIs. Ensure that the INI file contains the correct weight file in save_path in [Model] section. The valid INI file can be made withTizen.MachineLearning.Train.Model.Save if you have constructed the model with the provided method. For example, you can use the trained model with a single API as follows:

C#
Copy
using Tizen.MachineLearning.Inference; TensorInfo inInfo; TensorInfo outInfo; string modelFilePath = Tizen.Applications.Application.Current.DirectoryInfo.Data + "modelFile.ini"; ... var single = new SingleShot(modelFilePath, inInfo, outInfo);

You can use the trained model with Pipeline API as follows:

C#
Copy
using Tizen.MachineLearning.Inference; /* framework is 'nntrainer'*/ const string description = "appsrc ! other/tensor,dimension=(string)2:1:1:1,type=(string) int8,framerate=(fraction)0/1 ! tensor_filter framework=nntrainer model=model.ini ! tensor_sink"; var pipeline = new Pipeline(description);
  • Dependencies
    • Tizen 7.0 and Higher
Pipeline
Next Maps
Submit your feedback to GitHub